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Chapter 8
Bayesian methods 
for the design, 
analysis and 
interpretation of 
clinical studies

Andrew R Willan

Bayesian approaches to the design, analysis and 
interpretation of clinical studies have important advantages. 
They provide a transparent means of combining prior 
evidence with new data. They also allow direct statements 
of inference to be made regarding model parameters that 
are simple, relevant and intuitive. Furthermore, Bayesian 
methods provide the basis for value of information 
methods, which address questions such as: is the current 
evidence in favor of a new health intervention sufficient for 
its adoption and, if not, what is the optimal design for 
future research? In this chapter the author emphasizes the 
importance of these advantages for clinical research and 
decision-making. The author briefly discusses the issue of 
selecting prior evidence, arguing that the selection is 
subjective and that the subsequent inference should be 
considered conditional on the prior evidence selected. The 
author gives examples that illustrate how Bayesian methods 
provide statements of inference that are superior to those 
provided by frequentist methods. Lastly, the author gives 
a brief introduction to value of information methods.
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Over the past 30 years, the pressure for healthcare providers to base their 
practice on empirical evidence has increased sharply. This has led to an 
enormous increase in the number of publications of clinical studies, and 
to the ever-expanding Cochrane database of systematic reviews. Such 
evidence is meant to inform clinicians regarding the relative effectiveness 
of competing healthcare interventions and play a role in treatment 
decision-making. The vast majority of clinical studies are designed and 
analyzed using frequentist statistical principles. The current author argues 
that the alternative Bayesian approach has a number of advantages that 
are especially relevant for the planning, analysis and interpretation of 
clinical research. The arguments in favor of a Bayesian approach are 
directly related to the Bayesian definition of probability. The first advantage, 
and the one that is immediately associated with Bayesian analyses, is the 
ability to incorporate prior knowledge transparently through the application 
of Bayes’ theorem, which itself is an irrefutable statement of conditional 
probability, namely: Pr(A|B) = Pr(B|A)Pr(A)/Pr(B). Using the Bayesian 
definition of probability, A can be a statement regarding model parameters 
while B is a statement regarding the observed data. Therefore, by applying 
Bayes’ theorem, the prior knowledge of model parameters, given by Pr(A), 
can be updated, given the data, to yield the posterior knowledge, given by 
Pr(A|B). Applying Bayes’ theorem is often challenging, not just the technical 
aspects of its solution, but also selecting the prior evidence and formulating 
the associated distributions for the model parameters. The technical 
challenges have been addressed recently with the advancement of 
computer algorithms for Gibbs sampling [1], but selecting prior evidence 
and formulating distributions can remain an issue, and is often used as an 
argument in favor of taking a frequentist approach. 

The author argues that the prior distribution should be based on whatever 
evidence the researcher thinks is valid, and in that sense the associated 
inference and decision-making is transparently conditional on the evidence 
chosen [2]. However, for inference and decision-making to be convincing, 
the prior evidence selected must have credibility with those involved in 
the decision-making, as well as with those directly affected by it. 
Determining the appropriate prior evidence is an exercise in evidence 
synthesis and, therefore, the issue of publication bias needs to be 
addressed. An exhaustive search for relevant evidence is required, involving 
not just peer-reviewed journals, but also meeting abstracts and trial 
registration databases. The researcher may decide that there is no valid 

prior evidence, or that inference and 
decision-making should be based solely on 
the research data, in which case the author Bayesian methods provide a transparent 

means of combining prior and new knowledge.
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argues that the use of uninformative 
priors [3–5], although unsatisfactory from a 
purest point of view, is appropriate. 

The author further argues that transparently 
conditional inference and decision-making is better than frequentist 
inference, which is always opaquely conditional on ignoring all prior 
evidence. Some authors recommend a sensitivity analysis, in which various 
priors, ranging from skeptic to enthusiastic, are used [2]. Having selected 
the prior evidence to include, even if it is none, and accepting that the 
inference and decision-making is conditional, the other advantages of the 
Bayesian approach are realized. One advantage is that a Bayesian approach 
permits probability statements regarding model parameters, allowing for 
simple, intuitive and relevant statistical inference, and avoiding the 
misunderstandings often associated with the frequentist approach. 
Another advantage is the ability to apply Bayesian decision theory. Bayesian 
decision theory answers questions such as: is the current evidence in 
support of a new healthcare intervention sufficient for its adoption and at 
what level of reimbursement, and, if not, what research study is optimal 
for gathering further evidence?

Numerous authors have argued in favor of a Bayesian approach to statistical 
analysis [2–13]. A broad summary and good review is given by Spiegelhalter 
et al. [7]. Goodman states that the frequentists approach is “an amalgam 
of incompatible elements” [6]. In the same article, he states that the use of 
p-values is based on “the mistaken idea that a single number can capture 
both the long-run outcomes of an experiment and the evidential meaning 
of a single result”. In an accompanying article, Goodman argues that 
Bayesian approaches “make the distinction clear between experimental 
evidence and inferential conclusions while providing a framework in which 
to combine prior with current evidence” [8]. Spiegelhalter et al. state, “that 
a Bayesian approach allows a formal basis for using external evidence” and 
Bayesian methods provide a rational way to deal with the ethics of 
randomization, equivalence trials and the monitoring of accumulating 
evidence [2]. Kadane argues that the Bayesian approach is more flexible 
and ethical, and provides an appropriate means for addressing the problem 
of multiple testing [10]. Cornfield, and Lilford and Braunholtz argue that the 
Bayesian framework is the only coherent approach for healthcare policy 
decision-making [10,11]. 

In this chapter, in the section ‘Definitions of probability & statements of 
inference’, two definitions of probability are given. The first supports the 
frequentist approach, while the other supports the Bayesian. The ability of 

Bayesian methods lead to choerent, simple, 
intuitive and relevant statements of statistical 

inference.
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the two approaches to interpret the results of clinical studies is compared. 
In a following section, a number of real examples are given demonstrating 
how a frequentist approach can lead to faulty inference and how a Bayesian 
approach provides inference that is more consistent with the evidence. 
Lastly, a brief discussion of the role of Bayesian decision theory in the 
planning, analysis and interpretation of clinical research is given.

Definitions of probability & statements of inference
Frequentist and Bayesian inferences are fundamentally different since they 
are based on two entirely different definitions of probability. For the 
frequentist, the probability of an event is the limiting relative frequency of 
its occurrence in a series of repeated observations of a chance outcome in 
which it could occur. In this definition, the probability that a tossed coin will 
come up heads is 0.5, because if it was flipped an arbitrarily large number of 
times the proportion of times it would come up heads is 0.5. For the Bayesian, 
probability is the subjective expression of the uncertainty, or degree of belief, 
regarding the unknown. This is the definition in common usage. When 
someone takes an umbrella with them on a day in which the weather 
broadcast reports an 80% probability of rain, they are not thinking that if the 
day was relived an arbitrarily large number of times, it would rain on four-
fifths of them. They are thinking there is a good chance of getting wet today 
if they do not have an umbrella with them. The day only occurs once, and 
the weather broadcaster is expressing his or her subjective belief about 
whether or not it will rain that day.

The different definitions of probability lead to differing statements of 
inference. Consider the results of a randomized clinical trial (RCT) designed 
to compare treatment with standard, with respect to the probability of a bad 
outcome, in which the frequentist p-value is 0.035, and where a one-sided 
test of the null hypothesis that the relative risk (RR) is 1 is applied at the 5% 
level. The frequentist statement of inference would read as follows: ‘we can 
reject the null hypothesis that the RR is ≥1 (i.e., treatment is equivalent or 
inferior to standard) in favor of the alternative hypothesis that the RR is <1 
(i.e., treatment is superior to standard) with a probability of being wrong of 
less than 5%. This means that if the null hypothesis is true (i.e., treatment is 
equivalent or inferior to standard) and the trial was repeated an arbitrarily 
large number of times, the proportion of times that the results of these 
replications will be at least as inconsistent with the null hypothesis in favor 
of the alternative as the data from the trial under consideration is less than 
5%.’ This is not a direct statement of inference about the RR. It merely 
facilitates the deductive reasoning, in which one rejects the null hypothesis 
and concludes that the RR <1, because the probability of falsely do so is small. 
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This is not a statement about falsely rejecting the null hypothesis in favor of 
the alternative for this particular trial, but rather it is a statement about the 
proportion of an arbitrarily large number of null hypotheses that would be 
falsely rejected using the same criterion. Based on the author’s 35 years of 
experience, the proportion of people who interpret and apply the results of 
clinical research that fully understand this is very low. Although this is not a 
criticism of frequentist approaches per se, it does mean that frequentist 
inference is often misunderstood, misapplied and leads to faulty clinical 
decision-making. The argument made in this chapter is that Bayesian 
approaches provide statements of inference that are more intuitive and 
relevant, and are less likely to be misapplied. Furthermore, Bayesian 
approaches facilitate decision theory, which provides optimal clinical 
decision-making in the face of uncertainty.

By contrast, Bayesian methods do allow for direct statements of inference 
regarding the RR, based on its posterior distribution function. Ignoring for 
the moment the issue of incorporating prior information, the Bayesian 
statement of inference is the Prpost(RR <1) = 0.035, is simply, ‘the probability 
that treatment is superior to standard is 96.5%.’ Such simple statements of 
inference are not available in the frequentist framework, where probability 
statements are restricted to observations of the data. Clearly, the Bayesian 
statement inference is more intuitive, easier to interpret and addresses the 
specific issue in question, namely ‘what is the evidence that treatment is 
superior to standard?’

For the same example consider the frequentist confidence interval for RR of 
0.493–0.917. This is interpreted as follows: ‘if the trial was conducted an 
arbitrarily large number of times, in the limit, the proportion of the confidence 
intervals from these replications that include the true RR is 95%.’ It is hard 
to understand how this provides inference regarding the RR. If the interval 
excludes the null hypothesis, one claims that it can be rejected, but this has 
more to do with the way the interval is constructed than its definition, and 
in any case, the confidence interval is not required to test the null hypothesis. 
A Bayesian statement regarding a credible interval with the same limits is 
‘there is a 95% probability that the RR lies in the interval from 0.493 to 0.917.’ 
Again, the Bayesian approach provides more intuitive and interpretable 
statements of inference.

Examples
Antenatal corticosteroids for women at risk for early delivery
Numerous RCTs have found that a single course of antenatal 
corticosteroids (ACS) for pregnant women who are at risk of early 
delivery, reduces the risk of respiratory distress syndrome and other bad 
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outcomes in the babies. In a 2006 Cochrane review four RCTs were 
identified to have reported on cerebral palsy in the infants (the review 
has since been updated with an additional trial) [14]. This evidence is vital 
since it relates to a lawsuit and its interpretation has important 
consequences. The data are shown in Table 8.1. The Cochrane review 
reported a RR of 0.63, with an associated 95% confidence limits of 0.36, 
1.08 and a two-sided p-value of 0.08. Assessing this evidence in an expert 
opinion, an academic clinician, wrote, “there is no evidence from this 
review of a difference of incidence of later cerebral palsy”. This opinion 
presumably follows from the lack of significance at the traditional 0.05. 
Quite apart from the fact that this is in fact a one-sided question and 
recognition of this might have lead to a different conclusion, the term 
‘no evidence’ in reference to this evidence represents a complete 
misinterpretation, which is made far too frequently. Frequentist methods, 
which have become locked into the use of 0.05 as the threshold level for 
significance, have no way of assessing this evidence in an intuitive and 
meaningful way. The prespecification of a level of significance of 0.05, 
or sometimes 0.01, apparently became the convention because Fisher, 
due to copyright issues, was prevented from reproducing the complete 
tables for a standard normal random variable, but not from citing the 
levels for 0.05 and 0.01 [10].

Insisting that a null hypothesis be rejected with a low probability of error 
may have some appeal when one is attempting to limit the probability of 
incurring the opportunity loss of adopting a new intervention in the face 
of uncertainty; however, that is not at issue here, since the use of ACS in 
this circumstance is standard practice. The issue is what is the evidence 
that failing to administer ACS to a pregnant woman at risk of early delivery 
increases the risk of cerebral palsy? This is an issue that the frequentist 
approach is ill equipped to address. A Bayesian approach, in which an 
uninformative prior is used for the log odds ratio, provides a means of 
making inference using this data to address the issue in an intuitive and 

Table 8.1. Distributions for early cephalic version example.

Arm Distribution
b(a,b)

Mean
a/(a+b)

Variance
ab/{(a+b)2(a+b+1)} 

EECV b(474,409) 0.53681 0.00028127

ECV b(514,371) 0.58079 0.00027480

Difference Normal 
(-0.043985, 
0.00055607)

ECV: External cephalic version; EECV: Early external cephalic version
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meaningful way. By using an uninformative 
prior we are explicitly stating that the 
inference is based solely on the data from 
the four trials, and that it is a reasonable 
approach given we are including all known relevant RCTs. Using the 
WinBUGS code given in the supplementary information available online 
(see online at www.future-science.com/doi/suppl/10.4155/EBO.13.431), 
the posterior probability that the log odds ratio is negative is 0.9495, 
leading to the inference that the probability that a single course of ACS 
reduces the risk of cerebral palsy is 94.95% and provides strong evidence 
in favor of a single course of ACS.

Early external cephalic version
For pregnant women in the breech position at or beyond 37 weeks 
gestation it is standard practice to undergo a procedure referred to as 
external cephalic version (ECV) in an attempt to manipulate the fetus into 
a vertex position and, thus, avoiding the need for a caesarean delivery (CD). 
A randomized pilot study was performed to determine if, applying the 
procedure earlier between 33 and 36 weeks’, early external cephalic 
version (EECV) may reduce the need for CD [15]. In total, 116 patients were 
randomized to each procedure and the observed numbers of CDs were 83 
and 75 in the ECV and EECV arms, respectively. Based on these results a 
larger RCT was performed, in which 767 patients were allocated to the ECV 
arm and 765 patients to the EECV arm [16]. The authors, reporting the 
results of the large trial, stated that there were no differences in rates of 
cesarean section (398/765 [52.0%] for EECV vs 430/768 [56.0%] for ECV; 
RR: 0.93; 95% CI: 0.85, 1.02; p = 0.12) and conclude that EECV “does not 
reduce the rate of caesarean section” [16].

If we assume the uninformative prior b(1,1) for the probability of a CD for 
ECV and EECV, then the posterior distributions following both the pilot and 
larger trial would be:
n	b(1 + 75 + 398, 1 + [116 – 75] + [765 – 398]) = b(474,409) for EECV

n	b(1 + 83 + 430, 1 + [116 – 83] + [765 – 430]) = b(514,371) for ECV

Using the WinBUGS code given in the supplementary information available 
online, to derive the posterior distribution for the difference in the 
probabilities, yields an expected difference of -0.044, where a probability 
that the difference is less than 0 is 0.9687 (i.e., the probability that EECV 
reduces the risk of CD is 96.87%). With this statement of inference, it is 
very hard to support the conclusion that EECV “does not reduce the rate 
of caesarean section”. It is important to note that, by assuming an 

The opportunity loss of decision taken is the 
difference between the utility of the best 

decision and the utility of the decision taken.
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uninformative prior, we are basing our inference solely on the data from 
the two trials, and that by taking a Bayesian approach we are able to make 
direct inference regarding the difference in the between-arm probabilities 
of a CD. Assuming a normal approximation for the b distributions yields an 
expected difference in the probabilities of -0.044 and a probability that 
EECV reduces the risk of CD of 96.89%.

Topical paromomycin & gentamicin for cutaneous leishmaniasis
In a recent article in the New England Journal of Medicine, Ben Salah et al. 
reported the results of a randomize trial of topical paromomycin and 
gentamicin versus a control, in the treatment of cutaneous leishmaniasis [17]. 
Of the 125 patient randomized to active, 101 achieved the threshold for 
cure, compared with 73 of the 125 patients randomized to control. Based 
on these results, the authors rejected the null hypothesis using a two-sided 
test at the 0.05 level, and concluded in the abstract that “this trial provides 
evidence of the efficacy of paromomycin–gentamicin” [17]. It is worth noting 
that the stated conclusion is actually just a restating of the results. It says 
nothing about the whether or not paromomycin–gentamicin increases the 
probability of cure. This is appropriate because frequentist methods can 
only provide probability statements about the data, given a particular 
hypothesis, not about the difference in the probabilities of cure, given the 
data. To make direct inferential statements, appropriate prior distributions 
are required. A randomized Phase II pilot study was reported earlier, by 
some of the same authors [18]. In that study, of the 50 patients randomized 
to active, 47 achieve the threshold for cure, compared with 30 of the 
42 patients randomized to control. If we assume the uninformative prior 
b(1,1) for the probability of a cure for active and control prior to the pilot 
then the posterior distributions following both the pilot and larger trial 
would be:
n	b(1 + 47 + 101, 1 + [50 – 47] + [125 – 101]) = b(149,28) for active

n	b(1 + 30 + 73, 1 + [42 – 30] + [125 – 73]) = b(104,65) for control

Using WinBUGS with the same code used in the ‘Early external cephalic 
version’ section, to derive the posterior distribution for the difference in 
the probabilities, yields a difference of 0.206, with a probability that the 
difference is >0 of 0.9999 (the same result is found using normal 
approximations). Using a Bayesian approach and the pilot data to 
formulate the prior, the authors could have concluded that the probability 
that active increases the probability of cure is 99.99%, rather than 
concluding that ‘this trial provides evidence’ that active increases the 
probability of cure, which is only to state that using the data from the 
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trial, a two-sided, 0.05% level test of the null hypothesis can be rejected, 
which is only to say that if the same criteria was similarly applied to an 
arbitrarily large number of tests of the hypothesis, only 5% of them would 
be falsely rejected.

Trial of planned cesarean or vaginal delivery for twin pregnancy
In a recent article in the New England Journal of Medicine, by Barrett 
et al. [19], the sample size was determined using a frequentist approach 
to achieve an 80% power for rejecting the null hypothesis using a two-
sided, 5% level test if the new intervention reduced the probability of a 
bad outcome from 4 to 2%. The proportion of bad outcomes was 
observed to be approximately 2% in both arms and the null hypothesis 
was not rejected. That the observed proportion of bad outcomes in the 
standard group was lower than expected, led to the question, ‘are these 
negative results underpowered’ and ‘is the conclusion of no difference 
valid?’ These are very hard questions to answer in the frequentist 
framework. The 95% CI excludes a RR of 0.5, which does not really lead 
to a satisfactory statement of inference. The best that can be said is that 
we can ‘exclude with 95% confidence that the RR is <0.5’; however, that 
is simply restating the observation that the lower limit of the 95% 
confidence interval exceeds 0.5. Adopting a Bayesian approach, using 
whatever prior evidence is deemed relevant, a direct statement of 
inference could have been made regarding the probability that the RR is 
less <0.5, along the lines of, ‘the probability that the new intervention 
reduces the risk of a bad outcome sufficiently to justify its adoption is 
1%’, for the sake of argument.

The examples in this section are not given to imply that Bayesian approaches 
arrive at a truth that frequentist approaches fail to uncover. They are given 
to illustrate that Bayesian statements of inference are more intuitive and 
relevant, and appear to be more consistent with the empirical observations. 
The reader can decide if this has been successful.

Decision theory & value of information methods
The direct statement ‘there is a very high probability that a new 
intervention improves health outcomes’ does not necessarily imply that 
the intervention should be adopted. The following questions still need to 
be answered. Is the evidence sufficient and if the evidence is insufficient, 
what is the optimal design for further 
research? These questions can be 
addressed by Bayesian decision theory, 
also referred to as value of information 

Bayesian methods support value of information 
methods, which can be used to determine the 

adequacy of current evidence and the value of 
additional research.
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methods. To apply value of information 
methods a mean utility is ascribed to each 
intervention in the form of net benefit (NB), 
defined as NB = el – c, where: e is the mean 

health outcome (effectiveness), where larger values of e are preferred; l 
is the threshold value for the willingness-to-pay for a unit of health 
outcome; and c is the mean of the total healthcare costs associated with 
treating a patient with the intervention. Let incremental NB (INB) be the 
difference between the NB for treatment and the NB for standard. If the 
current mean of INB is positive, and no further evidence is to be sought, 
then the utility (i.e., NB) maximizing decision for future patients is to adopt 
treatment. However, if there is positive probability that INB is <0, the 
decision to adopt treatment is associated with an opportunity loss. The 
opportunity loss is a function of INB, and its expectation can be taken with 
respect to the current evidence. The amount by which the expected 
opportunity loss is reduced by performing a future study is the expected 
value of sample information (EVSI) of that study. If the cost of the future 
study exceeds the EVSI for all sample sizes, then the current evidence is 
sufficient and the optimal decision is to adopt treatment. On the other 
hand, if the EVSI exceeds trial cost for some sample size, then we are in a 
true state of equipoise and the optimal decision is to delay the adoption 
of treatment and perform the study with a sample size that maximizes the 
difference between the value and the cost. Therefore, by adopting a 
Bayesian approach, the truly relevant issues regarding the assessment of 
current evidence in treatment decision-making can be addressed. Details 
and extension can be found in [20–36].
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Summary. 

	� Bayesian methods have a number of advantages that are especially relevant for the planning, 
analysis and interpretation of clinical research.
	� Bayesian methods provide a transparent means of updating prior evidence when new data 

become available.
	� Bayesian approaches permit probability statements regarding model parameters, allowing for 

simple, intuitive and relevant statistical inference, and avoiding the misunderstandings often 
associated with the frequentist approach.
	� Bayesian decision theory answers questions such as: is the current evidence in support of a new 

healthcare intervention sufficient for its adoption and at what level of reimbursement, and, if 
not, what research study is optimal for gathering further evidence?
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